trong sách nâng cao phát triển toán 8 có bạn nhé
trong sách nâng cao phát triển toán 8 có bạn nhé
Cho A', B', C' lần lượt nằm trên ba cạnh BC, AC, AB (hoặc nằm trên các đường thẳng chứa các cạnh của tam giác ABC) sao cho A', B', C' thẳng hàng. Chứng minh rằng :
\(\frac{AC'}{BC'}.\frac{BA'}{CA'}.\frac{CB'}{AB'}=1\) (Định lí Mênêlauýt).
Cho A',B',C' lần lượt nằm trên cạnh BC,AC,AB của tam giác ABC. Biết rằng AA',BB',CC' đồng quy tại M. Chứng minh rằng: \(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)
cho tam giác abc các điểm a';b';c' trên các cạnh bc;ac;ab sao cho các đường thẳng aa';bb';cc' đồng quy tại m chứng minh rằng am/a'm=ab'/cb'+ac'/bc'
Cho A',B',C' lần lượt nằm trên cạnh BC,AC,AB của tam giác ABC .Biết rằng AA',BB',CC' đồng qui tại M.Chứng minh rằng:AM/A"M=AB'/CB'+AC'/BC'
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Cho A', B', C' lần lượt thuộc cạnh BC, AC, AB của tam giác ABC. biết AA', BB', CC' đồng quy tại M. C hứng minh AM/A'M=A'B/CB'+AC'/BC'
cho tam giác abc và 3 điểm a',b',c'lần lượt nằm trên 3 cạnh bc,ca,ab sao cho aa',bb',cc' đồng quy. cmr \(\frac{a'b}{a'c}.\frac{b'c}{b'a}.\frac{c'a}{c'b}\)=1
Cho tam giác ABC và M là một điểm tùy ý trong tam giác này. Các đường thẳng AM, BM, CM lần lượt cắt các cạnh BC, AC, AB tại A', B', C'.
Chứng minh rằng tổng \(\frac{AM}{AA'}+\frac{BM}{BB'}+\frac{CM}{CC'}\) bằng hằng số.
1. Cho tam giác ABC. Trên tia đối của BA, CA lần lượt lấy các điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là các trung điểm của ác đoạn BC, PQ. Đường thẳng MN cắt đường thẳng AB, AC lần lượt tại I,K. CMR: tam giác AIK cân
2. Cho tam giác ABC, AM là trung tuyến. Vẽ đường thẳng d đi qua trung điểm I của AM và cắt AB,AC. Gọi A',B',C' là hình chiếu của A,B,C trên đường thẳng d. CMR: AA'= (BB'+CC')/2