Cho a,b,c là các số tự nhiên khác 0 biết \(\frac{28}{29}<\frac{1}{a}+\frac{1}{b}+\frac{1}{c}<1\)
tìm GTNN của S=a+b+c
1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0
b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344
c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17
3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0
b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A
c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Câu 1: Tìm giá trị lớn nhất của biểu thức sau: \(P=\frac{4}{\left(x-3\right)^2+\left|y+7\right|+\frac{2}{3}}\)
Câu 2: Tìm giá trị nhỏ nhất của biểu thức \(P=\left|x-2012\right|+\left|x-2013\right|\)với x là số tự nhiên.
Câu 3: a) Với x, y là các số nguyên dương. Chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\).
b) Cho a, b, c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}>=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a,b,c thuộc N*
Thoả mãn\(1=\frac{1}{2}+\frac{1}{3}+\frac{1}{7}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Tìm giá trị nhỏ nhất của a+b+c
1. Cho a+b+c=2015 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{50}.Tinh\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
2. a) Tìm số nguyên a để \(\frac{a^2+a+3}{a+1}\)là số nguyên
b) Tìm số nguyên x,y sao cho 3x-2y+xy=11
c) Với giá trị nào của số tự nhiên n thì \(\frac{10n-3}{4n-10}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đó
3.Cho tam giácABC có góc A nhọn. Về phía ngoài của tam giác ABC vẽ tam giác BAD vuông cân tại A, tam giác CAE vuông cân tại A. Chứng minh:
a) DC=BE; DC vuông góc BE
b) BD2 + CE2 = BC2+ DE2
c) Đường thẳng qua A vuông góc với DE cắt BC tại K. Chứng minh K là trung điểm của BC
Biết \(\frac{28}{29}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< 1\)
Tìm GTNN của S=a+b+c
Cho a+b+c=2028 và\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính giá trị nhỏ nhất của : \(Q=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho a;b;c;d là các số nguyên dương thỏa mãn : a+b = c+d =1000
Tìm giá trị lớn nhất của \(\frac{a}{c}+\frac{b}{d}\)
a) Tìm số tự nhiên x,y biết \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=2004\)
b) Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) (với \(a,b,c\ne0;b\ne c\) ) chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)
c) Tìm giá trị nguyên của x để biểu thức \(M=\frac{2016x-2016}{3x+2}\) có giá trị nhỏ nhất