Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thành Đạt

cho a, b, c là các số thực thỏa mãn a, b, c > 0 và \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\). Chứng minh \(\frac{a+b}{2a-b}+\frac{b+c}{2c-b}\ge4\)

Kiệt Nguyễn
10 tháng 2 2021 lúc 21:15

Theo giả thiết: \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{2}{\sqrt{ac}}\Leftrightarrow b^2\le ac\Leftrightarrow\frac{ac}{b^2}\ge1\)

Ta có: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b\left(a+c\right)=2ac\Leftrightarrow2ac-bc=ab\Leftrightarrow2a-b=\frac{ab}{c}\)\(\Rightarrow\frac{a+b}{2a-b}=\frac{a+b}{\frac{ab}{c}}=\frac{ac+bc}{ab}=\frac{c}{b}+\frac{c}{a}\)(1)

Tương tự: \(\frac{b+c}{2c-b}=\frac{a}{c}+\frac{a}{b}\)(2)

Cộng từng vế hai đẳng thức (1), (2) và áp dụng Cô - si, ta được: \(\frac{a+b}{2a-b}+\frac{b+c}{2c-b}\ge\frac{c}{b}+\frac{c}{a}+\frac{a}{c}+\frac{a}{b}\ge4\sqrt[4]{\frac{ca}{b^2}}\ge4\)

Đẳng thức xảy ra khi a = b = c

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Hải Minh
Xem chi tiết
Vinh Lê Thành
Xem chi tiết
Cao Thị Thùy Linh
Xem chi tiết
pham ngoc huyen tram
Xem chi tiết
Nguyễn Bá Huy h
Xem chi tiết
Đỗ Đức Đạt
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Lê Minh Đức
Xem chi tiết
nơi bóng ma ghé qua
Xem chi tiết