Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Oriana.su

Cho a, b, c là các số thực không âm thỏa mãn a+b+c= 3. Tính giá trị nhỏ nhất của biểu thức Q=\(a^3+b^3+c^3\)

Nguyễn Việt Lâm
25 tháng 10 2021 lúc 9:38

\(a^3+1+1\ge3a\)

\(b^3+1+1\ge3b\)

\(c^3+1+1\ge3c\)

Cộng vế:

\(a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(Q_{min}=3\) khi \(a=b=c=1\)


Các câu hỏi tương tự
Phạm Thị Thu Trang
Xem chi tiết
Bánh Bao Nhân Thịt
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
Bảo Lam
Xem chi tiết
Nguyễn Long Vượng
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Trần Vũ Quỳnh Trang
Xem chi tiết
I Don't Know Hey
Xem chi tiết