Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
pro

Cho a; b; c là các số thực dương thỏa mãn: a+b+c=3

Tìm Min của: \(A=\dfrac{a}{a+2b^3}+\dfrac{b}{b+2c^3}+\dfrac{c}{c+2a^3}\)

Nguyễn Việt Lâm
19 tháng 9 2021 lúc 22:17

\(\dfrac{a}{a+2b^3}=a-\dfrac{2ab^3}{a+b^3+b^3}\ge a-\dfrac{2ab^3}{3\sqrt[3]{ab^6}}=a-\dfrac{2}{3}.b\sqrt[3]{a^2}\ge a-\dfrac{2}{9}b\left(a+a+1\right)\)

\(\Rightarrow\dfrac{a}{a+2b^3}\ge a-\dfrac{2}{9}\left(2ab+b\right)\)

Tương tự: \(\dfrac{b}{b+2c^3}\ge b-\dfrac{2}{9}\left(2bc+c\right)\) ; \(\dfrac{c}{c+2a^3}\ge c-\dfrac{2}{9}\left(2ac+a\right)\)

Cộng vế:

\(A\ge a+b+c-\dfrac{2}{9}\left(2ab+2bc+2ca+a+b+c\right)=3-\dfrac{2}{9}\left[2\left(ab+bc+ca\right)+3\right]\)

\(A\ge3-\dfrac{2}{9}\left[\dfrac{2}{3}\left(a+b+c\right)^2+3\right]=1\)


Các câu hỏi tương tự
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
Xem chi tiết
Bla bla bla
Xem chi tiết
dinh huong
Xem chi tiết