Cho a b c là các số thực dương thoả mãn 1/a +1/b + 1/c =1 cmr (a-1)(b-1)(c-1)=< 1/8 (a+1)(b+1)(c+1)
Cho các số thực a,b không âm thoả mãn a +b =1/2. Tìm Min, Max của P = a/1-a + b/1-b
cho a;b;c là các số thực dương thỏa mãn abc=8.Tìm Max P=\(\frac{1}{2a+b+6}+\frac{1}{2b+c+6}+\frac{1}{2c+a+6}\)
Cho a,b,c là các số thực dương thoả mãn a+b+c=1
CMR (a+bc)/(b+c)+(b+ca)/(c+a)+(c+ab)/(a+b) >=2
Cho các số thực a,b không âm thoả mãn: a + b = \(\dfrac{1}{2}\). Tìm max và min của biểu thức: P = \(\dfrac{a}{1-a}+\dfrac{b}{1-b}\)
a,cho x+y>=6;x,y>0,tìm min của p=5x+3y+10/x+8/y
b, a;b;c là 3 số thực dương thoả mãn a+2b+3c>=20. Tìm min của a+b+c+3/a+9/b+4/c
c,Cho x;y>0 thoả mãn x+y<=1, tìm min A=(1-1/x)-(1/y^2)
d,Cho a;b;c >0, a+b+c=<3/2, tìm min của A=a+b+c+1/a+1/b+1/c
e, Cho a,b dương,a;b=<1, tìm min của P=1/(a^2+b^2) +1/ab
g,Cho a;b;c>0, a+b+c=<1, tìm min của P=a+b+c+2(1/a+1/b+1/c)
Cho các số thực dương a,b,c thoả mãn a + b + c = 3. tìm giá trị lớn nhất của P = √a+b + √b+c + √c + a
Cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3\)
cho a,b,c là các số thực dương thoả mãn : ab+ac+bc=1
Tính A=(2a^2-bc+1)/(a^2+1)+(2b^2-ac+1)/(b^2+1)+(2c^2-ab+1)/(c^2+1)