Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thầy Cao Đô

Cho $a$, $b$, $c$ là các số dương thỏa mãn $abc = 1$. Chứng minh rằng nếu $a + b + c > \dfrac1a + \dfrac1b + \dfrac1c$ thì có một và chỉ một trong ba số $a$, $b$, $c$ lớn hơn $1$.

⚚ßé Só¡⁀ᶦᵈᵒᶫ
9 tháng 2 2022 lúc 8:46

Tham khảo:

Gỉa sử : a+b+c> 1/a + 1/b + 1/c nhưng không thỏa mãn một và chỉ một trong 3 số a,b,c lớn hơn 1

*TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1)

*TH2: có 2 số lớn hơn 1

Gỉa sử: a>1, b>1, c<1 <=> a-1>0 , b-1>0 , c-1<0

=> (a-1)(b-1)(c-1)<0 

=>abc+a+b+c-(ab+bc+ca)-1<0

<=>a+b+c<ab+bc+ca 

<=>a+b+c<abc/c+abc/a+abc/b 

Thay abc=1 ta được:

a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai)

=>đpcm

Khách vãng lai đã xóa
Tran Khanh Chi
16 tháng 7 2022 lúc 11:31
 

loading... Trường hợp 1: Giả sử ba số abc đều lớn hơn 1 hoặc ba số abc đều nhỏ hơn 1.

Khi đó a.b.c \ne 1
a.b. (trái với giả thiết).

loading... Trường hợp 2: Giả sử hai trong ba số abc lớn hơn 1.

Không mất tính tổng quát, giả sử a > 1 và b > 1.

Vì a.b.c = 1 nên c < 1 do đó:

     (a - 1).(b -1).(c - 1) < 0

\Leftrightarrow abc + a+b+c - ab - ac - ca - 1 < 0

\Leftrightarrow a+b+c - ab - ac - ca  < 0

\Leftrightarrow a+b+c < ab + ac + ca 

c <  + \(\dfrac{abc}{a}\) + \(\dfrac{abc}{b}\)

⇔ c < \(\dfrac{1}{c}\) \(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) (mâu thuẫn với giả thiết)

Vậy chỉ có một và chỉ một trong ba số abc lớn hơn 1

Hồ Thanh Huyền
9 tháng 7 lúc 22:15

fg

Lê Thị Trà My
1 tháng 10 lúc 21:57

1


Các câu hỏi tương tự
Thầy Cao Đô
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Thầy Cao Đô
Xem chi tiết