Lời giải:
Áp dụng BĐT Cô-si:
$a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab$
$b^2+c^2\geq 2bc$
$c^2+a^2\geq 2ac$
Cộng theo vế các BĐT trên ta được:
$2(a^2+b^2+c^2)\geq 2(ab+bc+ac)$
$\Rightarrow ab+bc+ac\leq a^2+b^2+c^2=27$
Vậy GTLN của $P$ là $27$
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab$
$b^2+c^2\geq 2bc$
$c^2+a^2\geq 2ac$
Cộng theo vế các BĐT trên ta được:
$2(a^2+b^2+c^2)\geq 2(ab+bc+ac)$
$\Rightarrow ab+bc+ac\leq a^2+b^2+c^2=27$
Vậy GTLN của $P$ là $27$
Cho các số dương a,b,c thỏa mãn a^2+b^2+c^2=64.Tìm GTLN của P=ab+bc+ca+a+b+c
Cho a,b,c thực dương thỏa mãn a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^2)+c^3/(c^2+ca+a^)=1.Tìm GTLN của BT:S=a+b+c
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của M=1/18(ab+bc+ca)-a^2/3a+1-b^2/3b+1-c^2/3c+1
Cho a,b,c là các số dương thỏa mãn: a + b + c = 3. Tìm GTNN của:
\(P=a^2+b^2+c^2+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)
Cho a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ca=6abc. Tìm GTNN của P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
với a , b ,c là các số dương thỏa mãn diểu kiện a+b+c=2 . Tìm GTLN của biểu thức \(Q=\sqrt{2a+bc}+\sqrt{2b+ac}+\sqrt{2c+ab}\)
cho a,b,c là các số không dương thỏa mãn a^2+b^2+c^2=(a-b)^2+(b-c)^2+(c-a)^2 và ab+bc+ca=9 tính a+b+c
Bài 1: Cho a,b,c là các số thực dương thỏa nãm a+b+c=1. Tìm GTNN của biểu thức
\(H=\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\)
Bài 2:Cho a,b là các số thực dương thỏa mãn \(a^2-6ab-2b^2=0\)
Tính giá trị của biểu thức \(P=\frac{ab}{a^2+2b^2}\)