Cho \(a,b,c\) là các số thực thỏa mãn \(\hept{\begin{cases}\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\\\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=a^3b^3c^3\end{cases}}\)
Chứng minh rằng \(abc=0\)
Cho các số thực a,b,c thỏa mãn đồng thời hai đẳng thức sau:
i) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\)
ii) \(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=a^3b^3c^3\)
Chứng minh rằng \(abc=0\)
Cho\(\hept{\begin{cases}a,b,c>0\\abc>1\end{cases}CMR:}2\left(a^2+b^2+c^2\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge7\left(a+b+c\right)-3\)
Cho \(\hept{\begin{cases}a\cdot\left(b^{2+c^2}\right)+b\cdot\left(b^2+c^2\right)+c\left(a^2+b^2\right)+2abc=0\\a^{3+}b^3+c^3=1\end{cases}Tính}A=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\left(a,b,c#0\right)\)
Cho 3 số thực a,b,c thỏa mãn : (a+b).(b+c).(c+a) abc và \(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=a^3b^3c^3\)
CM: abc=0
Hôm nay mình lại post bài lên nữa đây :D( lần này thì các bạn khỏi lo sai đề giống lần trước nhé,lần trước mình bất cẩn quá :D )
1.Với \(a,b,c>0\).Chứng minh:
\(\left[\left(a^2+b^2+c^2\right)\left(a+b+c\right)+3abc\right]^2\ge2\left[a^2+b^2+c^2+\left(a+b+c\right)^2\right]\left[a^3b+b^3c+c^3a+abc\left(a+b+c\right)\right]\)
2.Với \(\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\).Chứng minh:
\(\frac{a}{b^2+c}+\frac{b}{c^2+a}+\frac{c}{a^2+b}\ge\frac{3}{2}\)
3.Với \(a,b,c>0\).Chứng minh:
\(ab\left(b^2+ca\right)+bc\left(c^2+ab\right)+ca\left(a^2+bc\right)\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Cho các số a, b, c nguyên dương, phân biệt sao cho :
\(\hept{\begin{cases}a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2⋮a+b\\a+b\in P\end{cases}}\)(P là tập hợp số nguyên tố)
Chứng minh rằng : a, b, c không là độ dài 3 cạnh tam giác.
Cho \(\hept{\begin{cases}a\cdot\left(b^2+c^2\right)+b\cdot\left(c^2+a^2\right)+c\cdot\left(a^2+b^2\right)+2abc=0\\a^3+b^3+c^3=1\end{cases}}\)Tính A = \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
Cho \(a+b+c=0\). Biết \(\hept{\begin{cases}M=a\left(a+b\right)\left(a+c\right)\\N=b\left(b+c\right)\left(b+a\right)\\P=c\left(c+a\right)\left(c+b\right)\end{cases}}\)
Chứng tỏ: M=N=P
Giúp minh bài này với nha!