Cho a,b,c là các số hữu tỉ đôi một khác nhau
\(CMR\) \(M=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(c-a\right)^2}+\frac{1}{\left(b-c\right)^2}\) là bình phương của 1 số hữu tỉ
Cho a,b,c là 3 số hữu tỉ thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)
\(CMR\)\(M=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\)là bình phương một số hữu tỉ
Cho \(a+b+c=0;x+y+z=0;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(CM\) \(ax^2+by^2+cz^2=0\)
1. cho 3 số a,b,c hữu tỉ khác nhau
C/m \(\frac{1}{\left(b-c\right)^2}\)+\(\frac{1}{\left(c-a\right)^2}\)+\(\frac{1}{\left(a-b\right)^2}\)bằng bình phương 1 số hữu tỉ.
2. Cho a,b,c hữu tỉ thỏa mản: abc=1
\(\frac{a}{b^2}\)+\(\frac{b}{c^2}\)+\(\frac{c}{a^2}\)=\(\frac{a^2}{c}\)+\(\frac{b^2}{a}\)+\(\frac{c^2}{b}\)
C/m 1 trong 3 số là bình phương số hữu tỉ.
Cho \(a,b,c\)thỏa mãn \(a+b+c=0\). Chứng minh rằng \(M=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là một số hữu tỉ
cmr nếu các số hữu tỉ a,b,c thỏa mãn abc=1 và \(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}\)=\(\frac{b^3}{a}+\frac{a^3}{c}+\frac{c^3}{b}\)thì 1 trong 3 số a,b,c là lập phương của 1 số hữu tỉ
Bài 1Cho 3 số hữu tỉ a,b,c thỏa man abc=1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}\)
CMR trong 3 số a,b,c có 1 số bằng bình phương số còn lại
Bài 2 Cho a,b,c là các số khác 0 thỏa mãn \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Tính giá trị biểu thức \(P=\left(1+\frac{1}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\) . Chứng minh \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\) là bình phương của một số hữu tỉ
Cho a,b,c là số hữu tỉ khác 0. Đôi một phân biệt và thỏa mãn
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\le2\).
Cmr\(\sqrt{\frac{\left(b-c\right)^2}{a^2}+\frac{\left(c-a\right)^2}{b^2}+\frac{\left(a-b\right)^2}{c^2}}\) hữu tỉ
Cho a,b,c là các số hữu tỉ khác 0, đôi một phân biệt và thỏa mãn
\(\frac{a^2}{\left(b-c\right)^2}+\frac{b^2}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\le2\).CMR
\(\sqrt{\frac{\left(b-c\right)^2}{a^2}+\frac{\left(c-a\right)^2}{b^2}+\frac{\left(a-b\right)^2}{c^2}}\)hữu tỉ.
a, Tìm giá trị nguyên của x để biểu thức A = \(\frac{^{x^2+4}}{x-1}\)( với x khác 1) có giá trị là 1 số nguyên
b, Cho các số a,b,c khác 0 thỏa mãn: a+b+c = 0 và biểu thức:
P=\(\frac{ab}{a^2+b^2-c^2}\)+\(\frac{bc}{b^2+c^2-a^2}\)+\(\frac{ca}{c^2+a^2-b^2}\)
Chứng minh rằng: Giá trị của P khi được xác định luôn là một số hữu tỉ