1/a^4+b+c<=1/a+b+c
1/b^4+c+a=1/a+b+c
1/c^4+b+a<=1/a+b+c
=><=3/a+b+c
1/a^4+b+c<=1/a+b+c
1/b^4+c+a=1/a+b+c
1/c^4+b+a<=1/a+b+c
=><=3/a+b+c
cho a,b,c,d là 4 số nguyên dương thỏa mãn\(b=\frac{a+c}{2}\)  và\(\frac{1}{c}=\frac{1}{2}.\frac{1}{b}+\frac{1}{2}.\frac{1}{d}\).chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\)
1) Cho 3 số a,b,c khác 0 thỏa mãn điều kiện: \(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
Tính giá trị của biểu thức P = \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
2) Cho biết (x-1).f(x) = (x+4).f(x+8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm.
3) Tìm các cặp số nguyên (x,y) thỏa mãn: \(x-3y+2xy=4\)
4) Chứng minh rằng không tồn tại số tự nhiên n để n2 + 2018 là số chính phương.
5) Cho 2016 số nguyên dương a1, a2, a3, ............., a2016 thỏa mãn:
\(\frac{1}{^a1}+\frac{1}{^a2}+\frac{1}{^a3}+...+\frac{1}{^a2016}=300\)
Chứng minh rằng tồn tại ít nhất 2 số trong 2016 số đã cho bằng nhau.
Cho 4 số nguyên dương a,b,c,d .Trong đó b là trung bình cộng của a,c,d,đồng thời \(\frac{1}{c}=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{d}\right)\)
Chứng minh rằng 4 số a,b,c,d lập thành tỉ lệ thức
Bài 1: Có 2 số nguyên a, b nào thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}?\)Vì sao?
Bài 2: Cho a, b, c là các số nguyên dương. Chứng minh rằng: \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 3: Tìm các chữ số a, b, c biết: abc = \(\frac{1000}{a+b+c}\)
- Giúp xong sẽ hậu tạ.
1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0
b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344
c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17
3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0
b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A
c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
các bạn bạn nào làm đc ý nào thì làm giúp đỡ mình một tí :
a/ cho các số thực a,b,c,d,e khác 0 thỏa mãn\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{e}\)
cm rằng \(\frac{2a^2+3b^4+4c^4+5d^4}{2b^2+3c^4+4d^4+5e^4}=\frac{a}{e}\)
b/ cho a,b,c,d là các số thực dương thỏa mãn \(\frac{a}{b}< \frac{c}{d}\)
háy so sánh \(\frac{a}{b}\)với\(\frac{a+c}{b+d}\)
c/ cho các số nguyên dương a,b,c,d thỏa mãn a=b=c=2016
cm biểu thức sau ko phải là 1 số nguyên
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
thank các bạn nhiều
bạn nào làm đc mình tích cho nhé
Cho các số nguyên dương a;b;c thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\)Chứng minh rằng:a,a+b không thể là số nguyên tố ....b,nếu c>1 thì a+c và b+c không đồng thơi là số nguyên tố
Bài 1: Có 2 số nguyên a, b nào thỏa mãn \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\) ?Vì sao?
Bài 2: Cho a, b, c là các số nguyên dương. Chứng minh rằng: \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 3: Tìm các chữ số a, b, c biết: abc = \(\frac{1000}{a+b+c}\)
Giúp mình đi. Mình tick cho.
1) Cho 3 số a;b;c thỏa mãn : \(0< a\le b\le c< 1\)1
Chứng minh rằng :\(\frac{a}{b.c+1}+\frac{b}{a.c+1}+\frac{c}{b.a+1}\le2\)