Cho a, b, c khác nhau thỏa mãn: ab + bc + ca = 1 . Tính giá trị của biểu thức:
a) A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
b) B = \(\frac{\left(a^2+2bc-1\right)\left(b^2+2ca-1\right)\left(c^2+2ab-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
Tìm x nguyên thỏa mãn$x^2\left(x^2-1\right)\left(x^2-5\right)\left(x^2-10\right)<0$x2(x2−1)(x2−5)(x2−10)<0và $\left|x\right|<5$|x|<5Bài này của lớp 6 nhưng lập bảng xét dấu
Đúng 0
Bình luận (0)
xin lỗi em mới học lớp 5
nên ko làm đựơc
nếu ai cũng vậy thì k cho nhé
Đúng 0
Bình luận (0)
Thay 1 o MS?TS cua A va B bang ab+bc+ca r bien doi
Đúng 0
Bình luận (0)