Ta có \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\) \(a+b+c=0\) hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)
Giả sử \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\) a = b hoặc b = c hoặc c = a
Mà a, b, c đôi một khác nhau (vô lí) => a + b + c = 0
Do đó \(\hept{\begin{cases}-c=a+b\\-b=a+c\\-a=b+c\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}c^2=a^2+2ab+b^2\\b^2=a^2+2ac+c^2\\a^2=b^2+2bc+c^2\end{cases}}\)
Hay \(P=\frac{ab^2}{a^2+b^2-a^2-2ab-b^2}+\frac{bc^2}{b^2+c^2-b^2-2bc-c^2}+\frac{ca^2}{c^2+a^2-c^2-2ca-a^2}\)
\(=\frac{ab^2}{-2ab}+\frac{bc^2}{-2bc}+\frac{ca^2}{-2ca}=\frac{-1}{2}\left(a+b+c\right)=0\)