\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
\(\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)
\(\Leftrightarrow\frac{a+b}{c}+\frac{c}{c}=\frac{b+c}{a}+\frac{a}{a}=\frac{a+c}{b}+\frac{b}{b}\)
\(\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow\frac{a}{b}=1;\frac{b}{c}=1;\frac{c}{a}=1\)
\(\Rightarrow M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)