Cho 3x-y=6 Tính giá trị biểu thức
A= \(\frac{a^3}{\left(a-b\right)\left(a-c\right)}+\frac{b^3}{\left(b-a\right)\left(b-c\right)}+\frac{c^3}{\left(c-a\right)\left(c-b\right)}\)
Cho a,b,c là các số thực khác 0 thỏa mãn: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}-\frac{a^2+b^3+c^3}{abc}=2\)
Tính giá trị của biểu thức \(A=\left(\left(a+b\right)^{2013}-c^{2013}\right)\left(\left(b+c\right)^{2013}-a^{2013}\right)\left(\left(c+a\right)^{2013}-b^{2013}\right)\)
Cho a,b,c đôi một khác nhau. Tính giá trị của biểu thức:
\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
Cho a,b,c đôi một khác nhau. Tính giá trị biểu thức
P=\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
Bài 1: Tìm giá trị nguyên của x để giá trị của các biểu thức sau cũng là số nguyên
\(\frac{4x^3-3x^3+2x}{x-3}\)
Bài 2: Rút gọn phân thức
\(\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\); \(\frac{2\left(x-4\right)}{x^2+x-20}\)
Cho a3+b3+c3 = 3abc và a +b +c khác 0
a) Tính giá trị biểu thức \(\frac{a^2+b^2+c^2}{_{\left(a+b+c\right)^2}}\)
b)Chứng minh : P=\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{c}+\frac{1}{a}\right)=\frac{8}{abc}\)
Cho 3 số dương a;b;c thỏa mãn a3b3 + b3c3 + c3a3 = 3a2b2c2
Tính giá trị biểu thức \(A=\left(2+\frac{a}{b}\right)\left(2+\frac{b}{c}\right)\left(2+\frac{c}{a}\right)\)
1) Tìm a và b sao cho P(x)=x3+8x2+5x+a chia hết cho Q(x)=x2+3x+b
2)Cho 3 số a,b,c thỏa mãn \(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}=a+b+c\)
tính giá trị của biểu thức A=\(\frac{a^2+b^2}{\left(a+c\right)\left(b+c\right)}+\frac{b^2+c^2}{\left(b+a\right)\left(c+a\right)}+\frac{a^2+c^2}{\left(a+b\right)\left(c+b\right)}\)
3) Giải phương trình nghiệm nguyên 3x2+y2+4xy+4x+2y+5=0
cho a,b,c khác 0 thỏa mãn a3b3+b3c3+a3c3=3a2b2c2. tính giá trị biểu thức E=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)