Cho \(\left(a+b+c\right)^2=a^2+b^2+c^2\)và abc khác 0
Chứng minh rằng
\(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=3\)
cho a,b, thỏa mãn điều kiện a2 b2 c2 1 chứng minh abc 2 1 a b c ab bc ac ≥0
cho ̣(a2 - bc) (b - abc) = (b2 - ac) (a - abc) ; abc khác 0 và a khác b.
Chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=a+b+c\)
Chứng minh rằng nếu a2+b2+c2-ab-bc-ac=0 thì a=b=c
Cho a b c là ba số khác 0 và a + b + c = 0. Chứng minh rằng:
\(\frac{ab}{a^2+b^2-c^2}\) + \(\frac{ac}{a^2+c^2-b^2}\)+ \(\frac{bc}{b^2+c^2-a^2}\)= \(-\frac{3}{2}\)
cho a,b,c là số thực khác 0 và thỏa mãn (a+b+c)2=a2+b2+c2.chứng minh \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=3\)
Bài 1 :
Cho a, b, c là 3 cạnh của một tam giác. Chứng minh rằng :
\(\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ac}{a+c-b}\ge a+b+c\)
Bài 2 :
Cho a, b, c khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Rút gọn : \(Q=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Bài 3 :
Chứng minh rằng với mọi a, b, c khác 0 ta luôn có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Cho a,b,c>0 .Chứng minh rằng:\(\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\ge\frac{9}{2}\)
Cho a,b,c >0 và a2+b2+c2=3
Chứng minh rằng \(\dfrac{1}{a^3+a+2}\) + \(\dfrac{1}{b^3+b+2}\) + \(\dfrac{1}{c^3+c+2}\) ≥ \(\dfrac{3}{4}\)