1.Chứng minh \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}\ge\sqrt{y^2+yz+z^2}\)
2. Cho a,b,c>0. Chứng minh \(\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)-\frac{a+b+c}{\sqrt[3]{abc}}\le6\)
3. Cho a,b>0 , n là số nguyên dương. Chứng minh \(\frac{1}{\sqrt[n]{a}}+\frac{1}{\sqrt[n]{b}}\ge2\sqrt[n]{\frac{2}{a+b}}\)
4. Cho a,b,c >0. Chứng minh \(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ba}\le\frac{a+b+c}{2abc}\)
Dù iêm có sol rồi nhưng vẫn muốn xin tiếp hjhjhj (tham quá)
Cho a,b,c>0 thỏa mãn: \(a^4+b^4+c^4\le3\). CMR:
\(\frac{\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}}{\sqrt[3]{\frac{1}{\left(a+b\right)^3}+\frac{1}{\left(b+c\right)^3}+\frac{1}{\left(c+a\right)^3}}}\le\frac{2.\sqrt{2}.\sqrt[3]{27}}{\sqrt[3]{3}}\)
Bài 1 :Cho a,b,c dương thỏa mãn a+b+c=2
CMR \(\frac{bc}{\sqrt{3a^2+4}}+\frac{ca}{\sqrt{3b^2+4}}+\frac{ab}{\sqrt{3c^2+4}}\ge\frac{\sqrt{3}}{3}\)
Bài 2:Cho a,b,c>0. CMR
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
Cho a,b,c >0 và a+b+c=3
CMR: \(\frac{1}{\sqrt{2a+b+1}}+\frac{1}{\sqrt{2b+c+1}}+\frac{1}{\sqrt{2c+a+1}}\ge\frac{3}{2}\)
Cho a b c dương thỏa mãn a+b+c=3 CMR
\(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\ge\frac{3\sqrt{2}}{2}\)
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
Cho các số thực dương a,b,c thỏa mãn abc=1. CMR:
\(\frac{1}{\sqrt{a^4-a^3+ab-2}}+\frac{1}{\sqrt{b^4-b^3+bc-2}}+\frac{1}{\sqrt{c^4-c^3+ac-2}}\le\sqrt{3}\)
Giúp mình mấy câu này với nhé các ban.
1) Cho a,b,c>0 cmr:\(\frac{a}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{b^2+c^2}}+\frac{c}{\sqrt{c^2+a^2}}\le\frac{3}{\sqrt{2}}\)
2)Cho a,b,c>0 và abc=1. Cmr:\(\sqrt{\frac{a}{4a+4b+1}}+\sqrt{\frac{b}{4b+4c+1}}+\sqrt{\frac{c}{4c+4a+1}}\le1\)
3)Cho a,b,c>0 tm a+b+c=3 Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
Mình cảm ơn các bạn nhiều