Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng tử của các vì sao

Cho a, b, c > 0 thỏa mãn abc = 1; Chứng minh rằng : \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)

✓ ℍɠŞ_ŦƦùM $₦G ✓
30 tháng 4 2016 lúc 9:16

Áp dụng BĐT Cô-si ta có:

\(a^2+b^2\ge2ab;b^2+1^2\ge2b\)

\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2\)

\(\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}=\frac{1}{2}.\frac{1}{ab+b+1}\)

chứng minh tương tự

\(\Rightarrow\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1};\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ac+a+1}\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ac+a+1}\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)

đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\)

\(=\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)

\(=\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}=\frac{ac+a+1}{ac+a+1}=1\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.1=2\)

=>đpcm

Phạm Minh Thảo
30 tháng 4 2016 lúc 9:10
Bài này mk giải được nè chiều mk giải cho nha
✓ ℍɠŞ_ŦƦùM $₦G ✓
30 tháng 4 2016 lúc 9:17

mình mới lớp 7 nên có gì sai mong được chỉ bảo

NCS _ NoCopyrightSounds
30 tháng 4 2016 lúc 9:41

lớp 7 đấy ư??? học trước chương trình à?

Lê Chí Cường
30 tháng 4 2016 lúc 9:49

Thành lấy bài tau hay thế, http://olm.vn/hoi-dap/question/559729.html


Các câu hỏi tương tự
Lương Lê
Xem chi tiết
Forever AF
Xem chi tiết
Yim Yim
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
hatsune miku
Xem chi tiết
Siêu Nhân Lê
Xem chi tiết
Xuân Trà
Xem chi tiết
Không Có Tên
Xem chi tiết