Cho a,b,c>0 Cmr a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^2)+c^3/(c^2+ac+a^2)>=(a+b+c)/3
cho \(a,b,c>0\).CMR
\(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\ge\dfrac{a+b+c}{3}\)
Cho a,b,c>0. CMR: a^3/b^2+b^3/c^2+c^3/a^2 >= a+b+c
Cho a+b>0; b+c>0, c+a>0. CMR:
\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{a^2+b^2+c^2}{2}\)
cho 4 điểm a b c không đồng thời bằng 0 và 2 biểu thức : M = a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^2)+c^3/(c^2+ac+a^2) và N = b^3/(a^2+ab+b^2)+c^3/(b^2+bc+c^2)+a^3/(c^2+ac+a^2). CMR: M >= (a+b+c)/8
1) Cho a,b,c>0 tm a+b+c=3. Cmr \(\frac{1}{2+a^2+b^2}+\frac{1}{2+b^2+c^2}+\frac{1}{2+c^2+a^2}\le\frac{3}{4}\)
2) Cho a,b,c>0 tm a^2+b^2+c^2 bé hơn hoặc bằng abc. Cmr \(\frac{a}{a^2+bc}+\frac{b}{b^2+ca}+\frac{c}{c^2+ab}\le\frac{1}{2}\)
3) Cho a,b,c>0 tm a+b+c<=3. Cmr \(\frac{ab}{\sqrt{3+c}}+\frac{bc}{\sqrt{3+a}}+\frac{ca}{\sqrt{3+b}}\le\frac{3}{2}\)
4) Cho a,b,c>0 tm a+b+c=2. Cmr \(\frac{a}{\sqrt{4a+3bc}}+\frac{b}{\sqrt{4b+3ca}}+\frac{c}{\sqrt{4c+3ab}}\le1\)
5) Cho a,b,c>0. Cmr \(\sqrt{\frac{a^3}{5a^2+\left(b+c\right)^2}}+\sqrt{\frac{b^3}{5b^2+\left(c+a\right)^2}}+\sqrt{\frac{c^3}{5c^2+\left(a+b\right)^2}}\le\sqrt{\frac{a+b+c}{3}}\)
6) Cho a,b,c>0. Cmr \(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}+\frac{b^2}{\left(2b+a\right)\left(2b+c\right)}+\frac{c^2}{\left(2c+a\right)\left(2c+b\right)}\le\frac{1}{3}\)
Giúp mình với nhé các bạn
Cho a, b, c > 0 và a+b+c=3 . CMR :
\(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\)
Cho a, b, c > 0.
CMR : \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a^2+b^2+c^2}{a+b+c}\)
cho a,b,c>0 ,\(a^2+b^2+c^2=1\).CMR
\(\dfrac{a^3}{b+c}+\dfrac{b^3}{c+a}+\dfrac{c^3}{a+b}\ge\dfrac{1}{2}\)
Dùng bunhia nhé mn.Giúp e với e cần gấp ạ !