Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6
cho a,b,c>0.CMR
\(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Cho a, b, c > 0 và a+b+c=3 . CMR :
\(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}\ge\dfrac{3}{2}\)
1. Cho a,b,c không đồng thời bằng 0 và a+b+c=0. Rút gọn:
\(N=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
2. CMR: Nếu a+b+c=2x thì:
\(\dfrac{1}{x-a}+\dfrac{1}{x-b}+\dfrac{1}{x-c}-\dfrac{1}{x}=\dfrac{abc}{x\left(x-a\right)\left(x-b\right)\left(x-c\right)}\)
1.
a) CMR: Nếu a+b+c=0 thì \(\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{b^2+c^2-a^2}+\dfrac{1}{c^2+a^2-b^2}=0\)
b) Nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì:
\(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+2y-z}=\dfrac{c}{4x-4y+z}\)
2. Cho \(\dfrac{x}{x^2+x+1}=a\) .Tính \(M=\dfrac{x^2}{x^4-x^2+1}\)
Cho a, b, c > 0. CMR : \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
cho a,b,c đôi 1 khác nhau và khác 0. CMR: a+b+c=0 thì \(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)=9\)
Cho a,b,c khác 0 thỏa mãn a\(\left(\dfrac{1}{c}+\dfrac{1}{b}\right)+b\left(\dfrac{1}{c}+\dfrac{1}{a}\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-2\)
a(1b+1c)+b(1c+1a)+c(1a+1b)=−2
và a3+b3+c3=1. CMR \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Cho a,b,c khác 0 thỏa mãn \(a\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+b\left(\dfrac{1}{c}+\dfrac{1}{a}\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=-2\)
và a3+b3+c3=1. CMR \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
cho 0<a,b,c<2 cmr \(\dfrac{1}{2-a}\)+\(\dfrac{1}{2-b}\)+\(\dfrac{1}{2-c}\)>=\(\dfrac{a^2+b^2+c^2+ab+bc+ac}{2}\)
cho a,b,c>0;\(a+b+c,abc=1\).CMR
\(\dfrac{bc}{a^2\left(b+c\right)}+\dfrac{ca}{b^2\left(c+a\right)}+\dfrac{ab}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)