( ab + bc + ca )^2 = a^2b^2 + b^2c^2 +c^2a^2 + 2abc( a + b + c )
=a^2b^2 + b^2c^2 + c^2a^2 + 2abc.0 ( vì a + b + c = 0)
=a^2b^2 + b^2c^2 + c^2a^2
( ab + bc + ca )^2 = a^2b^2 + b^2c^2 +c^2a^2 + 2abc( a + b + c )
=a^2b^2 + b^2c^2 + c^2a^2 + 2abc.0 ( vì a + b + c = 0)
=a^2b^2 + b^2c^2 + c^2a^2
Phân tích đa thức thành nhân tử: (a2 + b2+ ab)2 -a2b2 -b2c2 -c2a2
Phân tích đa thức thành nhân tử: (a2 + b2+ ab)2 -a2b2 -b2c2 -c2a2
Phân tích đa thức thành nhân tử: (a2 + b2+ ab)2 -a2b2 -b2c2 -c2a2
Phân tích đa thức thành nhân tử: (a2 + b2+ ab)2 -a2b2 -b2c2 -c2a2
Cho a+ b + c =0 (a,b,c khác 0). Chứng minh rằng a^2/bc+b^2/ca+c^2/ab-3=0
Cho a,b,c > 0 và a+b+c =1. Chứng minh ab/(c+ab) + bc/(a+bc) + ca/(b+ca) > hoặc = 3/4
cho a+b+c=0 chứng minh a^4+b^4+c^4=2(ab+bc+ca)^2
Cho\(a+b+c=0\) chứng minh rằng
\(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Cho 0 < a, b, c < 2 và A + b + c = 3. Chứng minh ab + bc + ca > 2