1. Chứng minh các số sau là số chính phương
a) \(A=111...1\)(2n số 1) \(+444...4\)(n số 4) \(+1\)
b) \(B=111...1\)(2n số 1) \(+111...1\)[(n+1) số 1] \(+666...6\)(n số 6) \(+8\)
c) \(C=444...4\)(2n số 4) \(+222...2\)[(n+1) số 2] \(+888...8\)(n số 8) \(+7\)
d) \(D=22499...9100...09\)[(n-2) số 9; n số 0]
e) \(E=111...1555...56\)[n số 1; (n-1) số 5]
2. Cho \(a=111...1\)(2009 số 1) và \(b=1000...05\)(2008 số 0)
Chứng minh \(\sqrt{ab}+1\)là số chính phương.
Cho \(n\in N\), p là số nguyên tố và \(a=\dfrac{2n+2}{p};b=\dfrac{4n^2+2n+1}{p}\)là các số nguyên. CMR a,b không đồng thời chính phương
1.Tìm số tự nhiên n>1 nhỏ nhất để cho (n+1)(2n+1) ⋮ 6 và thương là một số chính phương
2.Tìm tất cả các số nguyên dương n sao cho \(n^4+n^3+1\) là số chính phương
3.Cmr nếu các số nguyên a,b,c thỏa mãn \(b^2-4ac\) và \(b^2+4ac\) đồng thời là các số chình phương thì abc ⋮ 30
Chứng minh số sau đây là số chính phương:
C = 4444…44 + 2222...22 + 88888…88 + 7
2n chữ số 4 / n+1 chữ số 2 / n chữ số 8
AI LÀM ĐÚNG VÀ NHANH MÌNH TICK CHO
Bài 1;
A=(x+y)(x+2y)(x+3y)(x+4y) + 4^2 là số chính phương
Bài 2; tìm n sao cho n^2 +2n+12 là số chính phương
Bài 3 CMR tổng bình phương của 2 số lẻ bất kì không chính phương
a) Cho các số a,b,c là các số hữu tỉ đôi một khác nhau CMR:
\(B=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\) Là bình phương của một số hữu tỷ
b) Cho các số a,b,c là các số thực dương CMR: \(\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}+\frac{a^2+b^2}{c}\ge2\left(a+b+c\right)\)
c) Tìm tất cả các số nguyên dương n sao cho \(n^4+n^3+1\)là số chính phương
1.Cho n là số nguyên dương,biết rằng 2n+1 và 3n+1 là 2 số chính phương.Cm \(n⋮40\)
2.Tìm số nguyên tố p để \(1+p+p^2+p^3+p^4\) là số chính phương
3.Cmr nếu n+1 và 2n+1 đều là số chính phương thì \(n⋮24\)
CMR số sau là số chính phương
A = 11...1(2n chữ số 1) + 11...1(n+1 chữ số 1) + 66...6(n chữ số 6) + 8
1) Cho x,y \(\in Z\); x,y > 1 thỏa mãn : \(4x^2y^2-7x+7y\)là số chính phương. CMR: x=y
2) Cho a,b,c \(\in Z\)thỏa mãn \(a^2+b^2+c^2=2\left(ab+bc+ca\right).CMR:\)ab+bc+ca; ab,bc,ca đều là các số chính phương.
3) CMR: \(\forall n\in N\)thì số an = \(2^n+3^n+5^n+6^n\)đều không là số lập phương
4) Tìm \(x,y\in Z\)thỏa mãn \(x^3-y^3=285\left(x^2+y^2\right)\)
5) Cho \(a,b,c\in Z\)thỏa mãn \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\in Z\). CMR abc là 1 số lập phương
6) Tìm x,y \(\in Z\), \(x\le y\)để \(1+4^x+4^y\)là số chính phương