b, A = 3+3^2 +3^3 +3^4 +....+3^120 =﴾3+3^2+3^3﴿+......+﴾3^118+3^119+3^120﴿ =3﴾1+3+3^2﴿+....+3^118﴾1+3+3^2﴿ = 3.13+...+3^118. 13 = 13﴾ 3+...+3^118﴿ chia hết cho 13 c, A = 3+3^2 +3^3 + 3^4 +....+3^120 = ﴾3+3^2+3^3+3^4﴿+.....+﴾3^117+3^118+3^119+3^120﴿ = 3﴾1+3+3^2+3^3﴿ +...+3^117﴾ 1+3+3^2 +3^3﴿ = 3.40+ ...+3^117 .40 = 40 .﴾ 3+....+3^117﴿ chia hết cho 40
b, A = 3+3^2 +3^3 +3^4 +....+3^120
=(3+3^2+3^3)+......+(3^118+3^119+3^120)
=3(1+3+3^2)+....+3^118(1+3+3^2)
= 3.13+...+3^118. 13
= 13( 3+...+3^118) chia hết cho 13
c, A = 3+3^2 +3^3 + 3^4 +....+3^120
= (3+3^2+3^3+3^4)+.....+(3^117+3^118+3^119+3^120)
= 3(1+3+3^2+3^3) +...+3^117( 1+3+3^2 +3^3)
= 3.40+ ...+3^117 .40
= 40 .( 3+....+3^117) chia hết cho 40
a, 3+3^2+ 3^3 +....+3^119+3^120
= (3+3^2)+....+( 3^119+3^120)
= 3( 1+3) +....+3^119.( 1+3)
= 3.4+....+3^119 . 4
=4( 3+...+ 3^119) chia hết cho 4
A= 3+3^2 +...+3^120
=3( 1+3 + 3^2 +....+3^119) chia hết cho 3
mà 3 và 4 nguyên tố cùng nhau nên A chia hết cho 3 nhân 4
tức là a chia hết cho 12 ( điều phải chứng minh)
b, A = 3+3^2 +3^3 +3^4 +....+3^120 =﴾3+3^2+3^3﴿+......+﴾3^118+3^119+3^120﴿ =3﴾1+3+3^2﴿+....+3^118﴾1+3+3^2﴿ = 3.13+...+3^118. 13 = 13﴾ 3+...+3^118﴿ chia hết cho 13 c, A = 3+3^2 +3^3 + 3^4 +....+3^120 = ﴾3+3^2+3^3+3^4﴿+.....+﴾3^117+3^118+3^119+3^120﴿ = 3﴾1+3+3^2+3^3﴿ +...+3^117﴾ 1+3+3^2 +3^3﴿ = 3.40+ ...+3^117 .40 = 40 .﴾ 3+....+3^117﴿ chia hết cho 40
b, A = 3+3^2 +3^3 +3^4 +....+3^120 =﴾3+3^2+3^3﴿+......+﴾3^118+3^119+3^120﴿ =3﴾1+3+3^2﴿+....+3^118﴾1+3+3^2﴿ = 3.13+...+3^118. 13 = 13﴾ 3+...+3^118﴿ chia hết cho 13 c, A = 3+3^2 +3^3 + 3^4 +....+3^120 = ﴾3+3^2+3^3+3^4﴿+.....+﴾3^117+3^118+3^119+3^120﴿ = 3﴾1+3+3^2+3^3﴿ +...+3^117﴾ 1+3+3^2 +3^3﴿ = 3.40+ ...+3^117 .40 = 40 .﴾ 3+....+3^117﴿ chia hết cho 40