\(\frac{1}{3}A=\left(\frac{1}{3}\right)^2+\left(\frac{1}{3}\right)^3+...+\left(\frac{1}{3}\right)^{2017}\)
\(A-\frac{1}{3}A=\frac{1}{3}-\left(\frac{1}{3}\right)^{2017}\)
\(A=\frac{2}{3}\left[\frac{1}{3}-\left(\frac{1}{3}\right)^{2017}\right]\)
\(A=\frac{2}{9}-\frac{2}{3}.\left(\frac{1}{3}\right)^{2017}\)
\(\frac{2}{9}< \frac{1}{2};\frac{2}{3}.\left(\frac{1}{3}\right)^{2017}>0\Rightarrow A< \frac{1}{2}\)