đặt B=1/1.2+1/2.3+1/3.4+...+1/49.50
=1/1.2+1/2.3+1/3.4+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-50
=1-1/20<1 (1)
A =1/1*1+1/2.2+1/3.3+...+1/50*50<1-1/2+1/2-1/3+...+1/49-1/50 (2)
từ (1),(2)=>A<B<2
=>A<2
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
ta có :
\(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}\)
...
\(\frac{1}{50^2}<\frac{1}{49.50}\)
-->\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
-> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
-->\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<\frac{49}{50}<1\)
-> 1+ \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}<1+1\)
=> A<2