\(10^{n-1}=100...00\) có n-1 chữ số 0 nên tổng các chữ số của nó =1 không thể chia hết cho 9
=> đề bài sai. Đề bài đúng phải là \(10^n-1\)
\(10^n-1=999..9\) (n chữ số 9) bao giờ cũng chia hết cho 9 (tổng các chữ số của nó = 9.n)
Để 1 số chia hết cho 11 thì hiệu của tổng các chữ số ở vị trí chẵn (hoặc lẻ) với tổng các chữ số ở vị trí lẻ (hoặc chẵn) phải chia hết cho 11
+ Nếu n lẻ thì số các chữ số 9 ở vị trí lẻ bao giờ cũng nhiều hơn số các chữ số 9 ở vị trí chẵn là 1 => hiệu giữa tổng các chữ số ở vị trí lẻ với tổng các chữ số ở vị trí chẵn là 9 không chia hết cho 11
+ Nếu n chẵn thì số các chữ số 9 ở vị trí lẻ bao giờ cũng bằng số các chữ số 9 ở vị trí chẵn => hiệu giữa tổng các chữ số ở vị trí lẻ với tổng các chữ số ở vị trí chẵn là 0 chia hết cho 11
Kết luận: điều kiện của n để A chia hết cho 9 và 11 là n chẵn