Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4
Cho A= 1001/10002 + 1 + 1001/10002 + 2 + ... + 1001/10002 + 1000
Chứng minh rằng 1<A2 <4
Chứng minh rằng 1 < A < 2 :
\(A=\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+...+\frac{1001}{1000^2+1000}\)
Cho \(A=\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+...+\frac{1001}{1000^2+1000}\)
Chứng minh \(1< A^2< 4\)
CẦN GẤP!!! LÀM ĐÚNG CÓ TICK!!
Cho A=(1001/10002+1)+(1001/10002+2)+...+(1001/10002+1000)
Chứng minh: 1<A2<4
A = \(\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+....+\frac{1001}{1000^2}+1000\)
Cho A = \(\frac{1001}{1000^2+1}+\frac{1001}{1000^2+2}+\)....... \(+\frac{1001}{1000^2+1000}\) .
CMR : \(1< A^2< 4\)
CMR A < A^2 < 4 biết
A =1001/1002^+1 +1001/1002^2+2 +...+1001/1002^2+1000
Tính nhanh : \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt[1]{2}+\sqrt[2]{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt[3]{4}+\sqrt[4]{5}}+...+\frac{1}{\sqrt{999}+\sqrt{1000}}+\frac{1}{\sqrt[999]{1000}+\sqrt[1000]{1001}}\)