\(A=1+3+3^2+...+\)\(3^{20}\)
=> \(3A=3+3^2+3^3+...+3^{21}\)
=>\(3A-A=\left(3+3^2+3^3+...+3^{21}\right)-\)\(\left(1+3+3^2+...+3^{20}\right)\)
=>\(A=\frac{3^{21}-1}{2}\)
=> \(B-A=\frac{3^{21}}{3}-\frac{3^{21}-1}{2}=\frac{2.3^{20}-3^{21}+1}{2}\)\(=\frac{1-3^{20}}{2}\)