Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Thị Cẩm Tú

cho A= 1+ 3 + 3 mũ 2 + 3 mũ 3 +......+ 3 mũ 101 chứng minh A chia hết cho 13

Đoàn Đức Hà
21 tháng 10 2021 lúc 10:04

 \(A=1+3+3^2+...+3^{101}\)

\(=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)

\(=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{99}\right)⋮13\)

Khách vãng lai đã xóa
nguyễn tạ lâm
9 tháng 11 2021 lúc 11:00

 

\begin{aligned}
&A=1+3+3^{2}+3^{3}+\ldots+3^{101} \\
&A=\left(1+3+3^{2}\right)+\left(3^{3}+3^{4}+3^{5}\right)+\ldots+\left(3^{99}+3^{100}+3^{101}\right) \\
&A=\left(1+3+3^{2}\right)+3^{3} \cdot\left(1+3+3^{2}\right)+\ldots+3^{99} \cdot\left(1+3+3^{2}\right) \\
&A=\left(1+3+3^{2}\right)\left(1+3^{3}+\ldots+3^{99}\right) \\
&A=13 \cdot\left(1+3^{3}+\ldots+3^{99}\right): 13
\end{aligned}

Phan Chí Đức
14 tháng 11 2021 lúc 22:07

A = 1 + 3 + 32 + .... + 3101

= [ 1+3+32 ] + ..... + [ 399 + 3100 +3101 ]

= [ 1+ 3+ 32 ] + .... + 399  . [ 1+3+3]

= 13. [ 1 + 33 + .... + 399 ⋮ 13 

 


Các câu hỏi tương tự
trần thị bảo ly
Xem chi tiết
Bùi Hồng Ngọc
Xem chi tiết
đồ ngốc ahihi
Xem chi tiết
nguyenlengan
Xem chi tiết
Lê Minh Hiền
Xem chi tiết
Hoa Nguyễn
Xem chi tiết
Hồng Nguyễn Thị
Xem chi tiết
Hồng Nguyễn Thị
Xem chi tiết
Hồng Nguyễn Thị
Xem chi tiết