(2^2 + 2) + (2^3 + 2^4) +...........+(2^11 + 1)
= 2. (2+1) + 2^3. (2+1) + ........ + 2^9.(2+1) +(2^11+1)
= 2. 3 + 2^3. 3 + ..... + 2^9. 3 + (2^11 +1)
Vì 3 chia hết cho 3
=> A chia hết cho 3
(2^2 + 2) + (2^3 + 2^4) +...........+(2^11 + 1)
= 2. (2+1) + 2^3. (2+1) + ........ + 2^9.(2+1) +(2^11+1)
= 2. 3 + 2^3. 3 + ..... + 2^9. 3 + (2^11 +1)
Vì 3 chia hết cho 3
=> A chia hết cho 3
Chứng tỏ A chia hết cho 6 với A=2+2mũ2+2mũ3+2mũ4+...+2mũ100
bài 1:
chứng tỏ rằng :
a, 3mũ2009 - 11mũ50 chia hết cho 2
b,2 mũ 4n+1 + 3 chia het cho 5
bài 3, chứng tỏ rằng A= 2+2mũ2+2mũ3+...+2mũ60 chia hết cho cả 2 và 5
S=2mũ1+2mũ2+2mũ3+....+2mũ60. Chứng tỏ S chia hết cho 3
chứng tỏ rằng
a). A = 2+2mũ2+ 2mũ3+ 2mũ4 + ...+ 2mũ9 + 2mũ10 chia hết cho 3
b) A= 2mũ2+ 2mũ4+ 2mũ6+ 2mũ8+ ...+ 2mũ18+ 2mũ20 chia hết cho 5
c) A = 7+ 7mũ2+ 7mũ3+ 7mũ4+ ...+ 7mũ9+ 7mũ10 chia hết cho 8
d) A = 4+ 4mũ2+ 4mũ3+ 4mũ4 + ...+ 4mũ9+ 4mũ10 chia hết cho 5
hãy chứng minh (1 +2 +2mũ2+2mũ3+2mũ4+2mũ5+2mũ6+2mũ7) chia hết cho 3
hãy chứng minh (1 +2 +2mũ2+2mũ3+2mũ4+...+2 mũ 10 +2 mũ 11) chia hết cho 9
A=2mũ1+2mũ2+2mũ3+……+2mũ2010chia hết cho 3 và 7
Chứng minh rằng : 2+2mũ2+2mũ3+...+2mũ8 +2mũ9 chia hết cho 14