A=1+1/32+1/34+.....+1/3100
=>32.A=9+1/3+/32+...+1/398
=>9A-A=(9+1/3+1/32+....+1/398)-(1+1/32+1/34+.+1/3100)
=>8A=9-1/3^100=9-1/3^n
=>1/3^100=1/3^n
=>3^100=3^n
=>n=100
Vay n=100
A=.............
=>\(9A=9+1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
=>\(9A-A=\left(9+1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)\)
=>\(8A=9-\frac{1}{3^{100}}\)
=>n=100