Cho 9x + 9–x = 23. Tính 3x + 3–x.
A. 5.
B. ± 5 .
C. 3.
D. 6.
Tìm x, biết 2 x = 2 3
A. x = 3 B. x = 3/2
C. x = 2/3 D. x = 1/6
Biết rằng 9x + 9–x = 23. Khi đó biểu thức A = 5 + 3 x + 3 - x 1 - 3 x - 3 - x = a b với a b là phân số tối giản và a , b ∈ ℤ . Tích a.b có giá trị bằng
A. 10.
B. 8.
C. -8.
D. -10.
Trong không gian Oxyz, cho hai điểm A (0; 8; 2), B (9; -7; 23) và mặt cầu (S) có phương trình (S): (x - 5)2 + ( y + 3 )2 + (z + 2)2 = 72. Mặt phẳng (P): x + by + cz + d = 0 đi qua điểm A và tiếp xúc với mặt cầu (S) sao cho khoảng cách từ B đến mặt phẳng (P) lớn nhất. Giá trị của b + c + d khi đó là:
A. b + c + d = 2
B. b + c + d = 4
C. b + c + d = 3
D. b + c + d = 1
tìm x, biết:
a. - 12 . ( x - 5) + 7 . ( 3 - x ) =5
b. 30 .( x+ 2 ) - 6 . ( x- 5) -24 .x = 100
c. ( x - 1 ) . ( x mũ 2 + 1) = 0
d. - 12 .( x-5) + 7 . (3- x) =5
Cho hàm số f ( x ) = x 3 - 6 x 2 + 11 x - 6 x 2 - 9 k h i x ≠ ± 3 m - 2 3 k h i x = 3 . Tìm giá trị của m để hàm số liên tục tại x=3?
A.8/3
B.2/3
C.1
D.4/3
Cho hàm số 3 2 y x x = − +3 có đồ thị (C) . Gọi 1 d , 2 d là tiếp tuyến của đồ thị (C) vuông góc với đường thẳng x y − + = 9 1 0 . Tính khoảng cách giữa hai đường thẳng 1 d , 2 d .
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x)= x^3-3x^2+2 trên đoạn [-1,2] . Tính giá trị biểu thức P= M-2m A. 3√2-3 B. 2√2-5 C. 3√3-5 D. 3√3-3
Cho hàm số f(x) liên tục trên R và F(X) là nguyên hàm của f(x), biết \(\int\limits^9_0f\left(x\right)dx=9\) và F(0)=3 tính F(9)
A. F(9)= -6
B. F(9)= 6
C. F(9)= 12
D. F(9)= -12