Ta có \(\frac{1}{2}=\frac{a+c+m}{a+m+c+a+m+c}=\frac{a+c+m}{2.\left(a+c+m\right)}\)
\(\frac{a+c+m}{a+b+c+d+m+n}=\frac{a+c+m}{a+c+m+d+m+n}\)
Vì a<b;c<d;m<n
=>a+c+m<b+d+n
=2(a+c+m)<a+c+m+b+d+n
=>\(\frac{a+c+m}{2.\left(a+c+m\right)}>\frac{a+c+m}{a+b+c+d+m+n}\)
=>\(\frac{1}{2}>\frac{a+c+m}{a+b+c+d+m+n}\)(ĐPCM)