Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)
Do a < b < c < d < m < n
=> 2c < c + d
m< n => 2m < m+ n
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n)
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)
cho 6 số nguyên dương a<b<c<d<m<n
CM:\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Cho 6 số nguyên dương a<b<c<d<m<n. Chứng minh rằng : \(\frac{a+c+m}{a+b+c+d++m+n}< \frac{1}{2}\)
cho 6 số nguyên dương a<b<c<d<m<n. Chứng minh: \(\frac{a+c+m}{a+b+c+d+m+n}
Cho 6 số nguyên dương a < b < c <d<m<n.Chứng minh rằng:
\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Cho 6 số nguyên dương a<b<c<d<m<n. CMR: \(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
Cho 6 số nguyên dương a, b, c, d, m, n thỏa a<b<c<d<m<n
Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}\)<\(\frac{1}{2}\)
Cho 6 số nguyên dương a, b, c, d, m, n thỏa: a < b < c < d < m < n.
Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}\)< \(\frac{1}{2}\)
Cho 6 số nguyên dương a < b < c < d < m < n
Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
Tìm 6 số nguyên dương a, b, c, d, m, n, biết: a<b<c<d<m<n
Chứng tỏ:
\(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Cần gấp!
Giúp mik nha