Cho 6 số nguyên dương \(a,b,c,d,m,n\) thỏa: \(a< b< c< d< m< n.\)
Chứng minh rằng \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}.\)
1. Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d; ab + 1 = cd
Chứng tỏ rằng: c = d
2. Có tồn tại cặp số nguyên (a; b) nào thỏa mãn đẳng thức sau:
a) -252a + 72b = 2013
b) 512a - 104 = -2002
3. Cho m và n là các số nguyên dương:
A = \(\frac{2+4+6+...+2m}{m}\)
B = \(\frac{2+4+6+...+2n}{n}\)
Biết A<B, hãy so sánh m và n
4. Cho a, b, c, d thuộc Z thỏa mãn: a - ( b + c ) = d. Chứng tỏ rằng: a - c = b + d
2. tính : D= 2^100-2^99-2^98 - ...- 2^2-2-1
3. Cho M = (-a+b) - (b+c-a) +(c-a) còn a là một số nguyên âm . Chứng minh rằng biểu thức M luôn luôn là số dương .
bài 1 ) tìm 2 phân số có tử = 9 biết giá trị của mỗi phân số đó lớn hơn -11/13 và nhỏ hơn -11/15
bài 2) cho M = x^2 -5/x^2 -2 (x thuộc Z ). Tìm x thuộc Z để M là số nguyên
bài 3 ) cho 6 số nguyên dương a<b<c<d<m<n
chứng minh rằng a+c+m/a+b+c+d+m+n<1/2
cho M=a/a+b+b/b+c+c/c+a với a, b,c là các số nguyên dương bất kì . Chứng minh rằng M không thể là số nguyên
câu 1:Tìm x
(x-3)+(x-2)+(x-1)+...+(x+10)+11=11 - 72
câu 2: Cho m và n là các số nguyên dương
A = \(\frac{2+4+6+...+2m}{m}\)B = \(\frac{2+4+6+...+2n}{n}\)
Biết A < B so sánh m và n.
câu 3: Cho 16 số nguyên. Tích của 3 số bất kì luôn là một số âm. Chứng minh rằng tích của 16 số đó là một số dương
.câu 4: Cho a = -20, b - c = -5, hãy tìm A biết A2= b(a-c) - c(a-b)
Cho M = a\(a+b) +b\(b+c) +c\(c+a) vối a, b ,c là các số nguyên dương bất kì.
Chứng minh rằng M không thể là số nguyên.
Cho m=(-a+b)-(b+c-a)+(c-a),trong đó b,c thuộc tập Z ,a là số nguyên âm.Chứng minh rằng m luôn dương
cho a, b, c, d là số nguyên dương
Chứng minh rằng : 1 \(1< \frac{a}{a+b+C}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)