Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Triệu Yến Vi

Cho 4 số tự nhiên liên tiếp không chia hết cho 5, khi chia cho 5 được những số dư khác nhau. Chứng minh rằng tổng của chúng chia hết cho 5.

Nhớ trình bày nhé!

ng thi thu ha
11 tháng 1 2016 lúc 16:55

neu 5 stn deu ko chia het cho 5 ma co so du khac nhau thi ta co : 

+  So chia 5 du 1 co dang 5k +1 

+   So chia 5 du 2 co dang 5k+2

+   So chia 5 du 3 co dang 5k +3 

+ So chia 5 du 4 co dang 5k+4

tong cac stn do la :

5k +1+ 5k+ 2 +5k+3 +5k+4 

= 5k .4 + ( 1+2+3+4)

= 5k.4+10

Vi : 5k chia het cho 5 nen\(\Rightarrow\)5k.4 chia het cho 5

      10 chia het cho 5 

\(\Rightarrow\)5k .4 +10 chia het cho 5 

vay tong 4 stn do chia het cho 5  ( dpcm)

tick cho minh nha

ng thi thu ha
11 tháng 1 2016 lúc 17:01

neu 4 stn do chia 5 dc nhung so du khac nhau ma so nao chia cung deu du ta co :

+   so chia 5 du 1 co dang 5k+1

+  so chia 5 du 2 co dang 5k+2

+  so chia 5 du 3 co dang 5k +3 

+ so chia 5 du 4 co dang 5k +4

tong 4 stn la: 

5k+1 +5k+2+5k+3+5k+4

= 5k .4 + ( 1+2+3+4)

= 5k.4 +10

Vi : 5k chia het cho 5 nen\(\Rightarrow\)5k.4 chia het cho 5

     10 chia het cho 5

\(\Rightarrow\)5k.4+10chia het cho 5

vay : tong 4 stn do chia het cho 5 ( dpcm)

tick minh nha


Các câu hỏi tương tự
Yễn Nguyễn
Xem chi tiết
Yễn Nguyễn
Xem chi tiết
Vũ Quỳnh Hương
Xem chi tiết
Tiểu thư cô đơn
Xem chi tiết
Đẹp Trai Nhất Việt Nam
Xem chi tiết
Linh Ngô
Xem chi tiết
Đặng Linh Chi
Xem chi tiết
Nguyễn Thị Phương Hoa
Xem chi tiết
mai viet thang
Xem chi tiết