gọi số tự nhiên có 4 chữ số có dạng \(\overline{abcd}\)
các sỗ tự nhiên không chia hết cho 5 có dạng: \(5k\pm1,5k\pm2\left(k\in N\right)\)
Ta giả sử các số đó là
a=5k+1, b=5k-1, c=5k-2, d=5k+2
=>a+b+c+d=(5k+1)+(5k-1)+(5k-2)+(5k+2)=20k
Vì 20k \(⋮\)cho 5 nên => a+b+c+d\(⋮\)cho 5(đpcm)
Chúc bn hok tốt
đúng thì k nha
Giải :
Gọi 4 số đó là a + 1 ; a + 2 ; a + 3 ; a + 4
4 số đó chia 5 được những số dư khác nhau => các số dư là 1 ; 2 ; 3 và 4
Giả sử a + 1 : 5 dư 1 ; .......
=> [ ( a + 1 ) - 1 ] = a chia hết cho 5 ; ........
Tổng của chúng là :
( a + 1 ) + ( a + 2 ) + ( a + 3 ) + ( a + 4 ) = a + 1 + a + 2 + a + 3 + a + 4 = 5a + 1 + 2 + 3 + 4 = 5a + 10
Vì 5a chia hết cho 5 và 10 chia hết cho 5 nên tổng của 4 số đó chia hết cho 5