Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
๓เภђ ภوยץễภ ђảเ

Cho 4 số dương a;b;c;d. Biết rằng \(b=\frac{a+c}{2};c=\frac{2bd}{b+d}\)

Chứng minh 4 số này lập thành 1 tỉ lệ thức 

B2 

Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right);\left(a;b;c\ne0;b\ne c\right)\) . Chứng minh \(\frac{a}{b}=\frac{a-c}{c-b}\)

Đặng Ngọc Quỳnh
17 tháng 10 2020 lúc 18:12

B1:

Từ \(b=\frac{a+c}{2}\Rightarrow2b=a+c\left(1\right)\)

Từ \(c=\frac{2bd}{b+a}\)thay vào (1) ta được:

\(2b=a+\frac{2bd}{b+a}\)

\(\Leftrightarrow2b\left(b+a\right)=a\left(b+a\right)+2bd\)

\(\Leftrightarrow2b^2+2ab=ab+a^2+2bd\)

\(\Leftrightarrow2b^2+ab-a^2-2bd=0\)

\(\Leftrightarrow2b\left(b-d\right)+a\left(b-a\right)=0\)

\(\Leftrightarrow2b\left(b-d\right)=a\left(a-b\right)\Leftrightarrow\frac{2b}{a}=\frac{a-b}{b-d}\)

Khách vãng lai đã xóa
Đặng Ngọc Quỳnh
17 tháng 10 2020 lúc 18:15

B2: Từ \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}hay2ab=c\left(a+b\right)\)

\(\Rightarrow ab+ab=ac+bc\Rightarrow ab-bc=ac-ab\Rightarrow b\left(a-c\right)=a\left(c-b\right)\)

Do đó: \(\frac{a-c}{c-b}=\frac{a}{b}\)(đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Thanh Dung
Xem chi tiết
Huy Nguyễn Đức
Xem chi tiết
Phạm Tú Uyên
Xem chi tiết
Đỗ Hữu Phước
Xem chi tiết
yên phong
Xem chi tiết
Đinh Tuấn Việt
Xem chi tiết
Nguyễn Nhật Anh
Xem chi tiết
Phạm Bùi Quang Huy
Xem chi tiết
phạm quỳnh anh
Xem chi tiết