Bài tập 3* . Chứng minh rằng :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2\left(\sqrt{x}+\sqrt{y}\right)\) với x, y > 0
Bài tập 5* . Chứng minh rằng :
\(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)với \(0\le a,b,c\le1\)
Bài tập 9* . Chứng minh rằng :
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{a^3+c^3+abc}\le\frac{1}{abc}\)với a, b, c > 0
Cho x,y là các số thực
CMR: \(-\frac{1}{4}\le\frac{\left(x^2-y^2\right)\left(1x^2y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)^2}\le\frac{1}{4}\)
1) Cho x,y,a,b là các số thực thỏa mãn :\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^2+y^2}{a+b}\) và \(x^2+y^2=1\)
Chứng minh \(\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}????\)
2) Cho a,b,c là các số thực dương. Chứng minh bất đẳng thức:
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{c+a}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho x , y , z thỏa mãn \(1\le x,y,z\le2\) . Tìm giá trị lớn nhất của biểu thức : \(A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho x và y là hai số khác 0 và thỏa mãn x+y khác 0. Chứng minh rằng:
\(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{x^3y^3}\)
Cho x,y>0 Chứng minh: \(\frac{4}{\left(x+y\right)^2}\le\frac{1}{x.y}\)
1. cho các số nguyên a,b,c,d khác 0 thỏa mãn ab=cd
chứng minh rằng \(a^{2014}+b^{2014}+c^{2014}+d^{2014},\) là hợp số
2. xác định đa thức f(x)=\(x^2+a.x+b\)biết rằng \(\left|f\left(x\right)\right|\le\frac{1}{2}\forall x\)
thỏa mãn \(-1\le x< 1\)
1) Cho x,y,z là các số thực thỏa mãn \(0\le x,y,z\le1\). Chứng minh rằng
\(\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\le\left(1-xyz\right)^3\)
2) Cho x,y là các số thực thỏa mãn \(x^2+xy+y^2=3\). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức
\(P=2x^2-5xy+2y^2\)
Bài 1: Cho \(x\ge y\ge1\)Chứng minh \(x+\frac{1}{x}\ge y+\frac{1}{y}\)
Bài 2: Cho \(1\le a;b;c\le2\). Chứng minh rằng
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
Làm 1 bài cũng được, không nhất thiết làm hết