\(\frac{b+c+d}{a}\)= \(\frac{c+d+a}{b}\)= \(\frac{d+a+b}{c}\)= \(\frac{a+b+c}{d}\)
= \(\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
= \(\frac{3a+3b+3c+3d}{a+b+c+d}\)
= \(\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)= 3
vậy k = 3
b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=k
áp dụng tc dãy tỉ số bằng nhau ta được:
b+c+d+c+d+a+d+a+b+a+b+c/a+b+c+d=k
=>3a+3b+3c+3d/a+b+c+d=k
=>3+k
=>k=3
Vậy k=3