Cho tam giác ABC có trọng tâm G . Gọi I là trung điểm CG và M,N là các điểm thỏa mãn vectơ MN = vectơ MA + vectơ MB + 4 vectơ MC . Chứng minh rằng 3 điểm M, I , N thẳng hàng.
Tứ Giác ABCD có M,N,I,J là trung điểm AD,BC,AC,BD. tìm vecto MN + vecto IJ
Cho tam giác ABC có M là trung điểm AB, N là điểm trên cạnh AC sao cho AN = 2 NC. Gọi K là trung điểm MN. Hãy phân tích vectơ AK theo vectơ AB và vectơ AC.
Cho tam giác ABC, gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Số vectơ bằng vectơ M N → có điểm đầu và điểm cuối trùng với một trong các điểm A, B, C, M, N, P bằng:
A. 1
B. 2
C. 3
D. 6
Cho tam giác đều ABC, tâm O. M là một điểm bất kì trong tam giác. Hình chiếu vuông góc của M xuống 3 cạnh của tam giác là D, E, F. Từ M kẻ ba đường thẳng song song với 3 cạnh của tam giác. Các giao điểm với các cạnh lần lượt là: I, J, K, L, P, Q (D là trung điểm IQ; E là trung điểm KP; E là trung điểm KP; F là trung điểm LJ). Chứng minh:
\(\overrightarrow{MD}=\frac{\overrightarrow{MI}+\overrightarrow{MQ}}{2}\);\(\overrightarrow{ME}=\frac{\overrightarrow{MK}+\overrightarrow{MP}}{2}\);\(\overrightarrow{MF}=\frac{\overrightarrow{MJ}+\overrightarrow{ML}}{2}\)
Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm của BC, AC, AB. D là trung điểm của AM. Chứng minh rằng:
a, vecto AB+ vecto AC+ vecto MN+ vecto MP = vecto 0
b, vecto NB+ vecto NC - 2.vecto AN= 4.vecto ND
cho tam giác ABC. Các điểm M và N thỏa mãn : vecto MN= 2 vecto MA- vecto MB+ vecto MC
a) tìm điểm I sao cho 2 vecto IA - vecto IB + vecto IC = vecto 0
b) CM : đường thẳng MN luôn đi qua một điểm cố định
c) Gọi P là trung điểm BN . CM đường thẳng MP luôn đi qua một điểm cố định
cho tứ giác ABCD,gọi I,J lần lượt là trung điểm của AB và CD, O là trung điểm của IJ .chứng minh rằng: a)AC + BD =2IJ b) OA +OB +OC + OD= 0 c) MA + MB +MC +MD=4MO giúp em với ạ
Trong mp Oxy , cho tam giác ABC với B(3;2) , C(-5;0) ; M và N lần lượt là trung điểm của AB và AC . Tọa độ của \(\overrightarrow{MN}\)là
A. ( -4; 3) B. ( 5; 3) C. ( -4; -1) D. ( 0; -1)