Bài 19: Cho 4 điểm A, B, C, D theo thứ tự trên một đường thẳng và \(\frac{AB}{AD}=\frac{CB}{CD}=\frac{2}{3}\)
a) Nếu BD=10cm, tính CB; DA
b) Chứng minh rằng: \(AC=\frac{3AB+2AD}{5}\)
c) Gọi O là trung điểm của BD. Chứng minh rằng: \(OB^2=OA.OC\)
Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của 2 đường chéo AC và BD. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự E và G. a) Chứng minh OA.OD=OB.OC. b) Cho AB = 5 cm, CD= 10 cm, Oc = 6 cm. Tính OA, OE. c) Chứng minh rằng : 1/OE = 1/OG = 1/AB + 1/CD ( giúp mik với ạ
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
A, IP/OA=IB/OB
B, IP/IS=IB/ID*OD/OB
C, IP/IS=IQ/IR
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Bài 1 (4đ). Cho tứ giác ABCD có AB//CD. Gọi M, N lần lượt là trung điểm của AC và BD. Gọi O là giao điểm của hai đường thẳng theo thứ tự đi qua M và N tương ứng vuông góc với BC và AD.
a) Chứng minh rằng MN//CD.
b) Chứng minh rằng OC = OD.
Cho đoạn thẳng AB. O là trung điểm. Trên cùng một nửa mặt phẳng bờ là AB kẻ Ax, By cùng vuông góc với AB. Trên Ac lấy điểm C khác A. Từ O kẻ đường thẳng vuông góc với OC cắt By tại D. Từ O hạ O M ⊥ C D OM⊥CD a) Chứng minh O A 2 = A C . B D OA2=AC.BD b) Chứng minh Δ A M B ΔAMB vuông c) Gọi N là giao điểm của BC và AD. Chứng minh MN//AC
Gọi O là trung điểm của AB. Trên cùng một nửa mặt phẳng bờ là đường thẳng AB kẻ hai tia Ax và By cùng vuông góc với AB. Trên tia Ax lấy điểm C (C khác A). Từ O kẻ đường thẳng vuông góc với OC, đường thẳng này cắt By tại D. Từ O hạ đường vuông góc OM xuống CD (M thuộc CD).
a) Chứng minh: OA2 = AC.BD.
b) Chứng minh tam giác AMB vuông.
c) Gọi N là giao điểm của BC và AD. Chứng minh: MN // AC
GIÚP MÌNH VS !!!
Bài 1: Cho hình thang ABCD (AB//CD) có O là giao điểm của AC và BD. Gọi F là trung điểm của CD. E là giao điểm của OF và AB. Chứng minh rằng: E là trung điểm của AB
Bài 2: Cho hình bình hành ABCD, 1 đường thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. Chứng minh rằng: a) DM^2 = MN*MK b) DM/DN+DM/DK=1
Cho hình thang cân ABCD có AB//CD; AB<CD kẻ đường cao AH và BK a) Cho biết AB=a; CD=b Tính DH và DK theo a và b b) Gọi O là giao điểm là 2 đường chéo chứng minh rằng OA=OB; OC=OD c)Gọi E là giao điểm của 2 cạnh bên chứng minh rằng OE là trung trực của 2 đáy d) chứng minh rằng AC^2 -BC^2 = AB.CD