cho x,y,z là 3 số thực dương thoã mãn x+y+z=3. Tìm giá trị nhỏ nhất chủa biểu thức
\(Q=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)
Cho x, y,z thoã mãn x+y+z+1=4xyz. Chứng minh 1/x+1/y+1/z >=3.
Cho x,y,z thoã mãn (z-1)x-y=1 và x+2y=2
Chứng minh rằng \(\left(2x-y\right)\left(z^2-z+1\right)\)=7 tìm tất cả các số nguyên thoã mãn phương trình trên
Tìm các số x,y,z thoã mãn điều kiện. x+y+z=2√x-1 +4√2y-2 +6√z-3
Tìm các số nguyên dương x, y, z thoã mãn 3^x+2^y=1+2^z
Cho 3 số thực x y z thỏa mãn xy+yz+zx=1. Tính giá trị biểu thức:
A=\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}+z\sqrt{\frac{\left(1+y^2\right)\left(1+x^2\right)}{1+z^2}}}\)
\(\hept{\begin{cases}x+y+z=\frac{1}{2}\\xy+yz+zx=-2\\xyz=-\frac{1}{2}\end{cases}}Tính x^5+y^5+z^5\)Cho các số thực x,y,z thoã mãn
Cho 3 số thực x, y, z thỏa mãn \(x^2+y^2+z^2=3\). Tìm giá trị nhỏ nhất của biểu thức :
\(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Cho \(x,y,z\inℝ\) thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\). Tính giá trị của biểu thức: \(P=\dfrac{3}{4}+\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)\)