Cho ba số x,y,z khác o thỏa mãn điều kiện :
\(\dfrac{y+z+t-nx}{x}=\dfrac{z+t+x-ny}{y}=\dfrac{t+x+y-nz}{z}=\dfrac{x+y+z-nt}{t}\)(n là số tự nhiên) và x+y+z+t=2019.
Tính giá trị của biểu thức P = x + 2y - 3z + t
cho 4 số x,y,z,t khác 0 thỏa mãn:
\(\dfrac{y+z+t-nx}{x}=\dfrac{z+t+x-ny}{y}=\dfrac{t+x+y-nz}{z}=\dfrac{x+y+z-nt}{t}\) (n là số tự nhiên) và x+y+z+t= 2012. tính giá trị của bt: P= x+2y-3z+t
Cho biểu thức M = \(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) với x,y,z,t là các số tự nhiên khác 0 . Chứng minh \(M^{10}< 1025\)
Cho 3 số x,y,z khác 0 thoả mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức :
\(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
Cho 3 số x,y,z thỏa mãn điều kiện
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-x}{z}\)
Hãy tính giá trị biểu thức : \(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
Cho x,y,z,t thỏa mãn: \(\dfrac{x}{y+z+t}\)=\(\dfrac{y}{z+t+x}\)=\(\dfrac{z}{t+x+y}\)=\(\dfrac{t}{x+y+z}\)
Tính giá trị của biểu thức P= \(\dfrac{x+y}{z+t}+\dfrac{y+z}{x+t}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)
Cho x,y,z,t \(\in\)N*.CMR giá trị của biểu thức
M=\(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) không là số tự nhiên
Cho các cặp số nguyên \(x;y;z;t\) thỏa mãn \(\dfrac{x+y}{y+z}=\dfrac{y+z}{z+t}=\dfrac{z+t}{t+x}=\dfrac{t+x}{x+y}\)
Chứng tỏ rằng biểu thức \(A=\left(\dfrac{y+z}{x+t}\right)^{2013}+\left(\dfrac{y+t}{x+y}\right)^{2014}\) có giá trị nguyên
Cho x, y, z là các số thực thỏa mãn \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3z}{z}=\dfrac{1}{x+y+z}\)
Tính giá trị biểu thức: A = 2016x + y2017 + z2017