Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đức Vương Hiền

Cho ba số x,y,z khác o thỏa mãn điều kiện :

\(\dfrac{y+z+t-nx}{x}=\dfrac{z+t+x-ny}{y}=\dfrac{t+x+y-nz}{z}=\dfrac{x+y+z-nt}{t}\)(n là số tự nhiên) và x+y+z+t=2019.

Tính giá trị của biểu thức P = x + 2y - 3z + t

Nguyễn Việt Lâm
18 tháng 2 2019 lúc 11:00

\(x+y+z+t=2019\Rightarrow\left\{{}\begin{matrix}x+y+z=2019-t\\x+y+t=2019-z\\x+z+t=2019-y\\y+z+t=2019-x\end{matrix}\right.\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{y+z+t-nx}{x}=\dfrac{x+z+t-ny}{y}...=\dfrac{\left(3-n\right)\left(x+y+z+t\right)}{x+y+z+t}=3-n\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z+t-nx}{x}=3-n\\\dfrac{x+z+t-ny}{y}=3-n\\\dfrac{x+y+t-nz}{z}=3-n\\\dfrac{x+y+z-nt}{t}=3-n\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2019-x-nx}{x}=3-n\\\dfrac{2019-y-ny}{y}=3-n\\\dfrac{2019-z-nz}{z}=3-n\\\dfrac{2019-t-nt}{t}=3-n\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2019-\left(n+1\right)x=\left(3-n\right)x\\2019-\left(n+1\right)y=\left(3-n\right)y\\2019-\left(n+1\right)z=\left(3-n\right)z\\2019-\left(n+1\right)t=\left(3-n\right)t\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2019}{3-n+n+1}=\dfrac{2019}{4}\\y=\dfrac{2019}{3-n+n+1}=\dfrac{2019}{4}\\z=\dfrac{2019}{3-n+n+1}=\dfrac{2019}{4}\\t=\dfrac{2019}{3-n+n+1}=\dfrac{2019}{4}\end{matrix}\right.\)

\(\Rightarrow x=y=z=t\Rightarrow P=x+2x-3x+x=x=\dfrac{2019}{4}\)


Các câu hỏi tương tự
Nguyễn Đăng Khoa
Xem chi tiết
 nguyễn hà
Xem chi tiết
crewmate
Xem chi tiết
dream XD
Xem chi tiết
kiwi nguyễn
Xem chi tiết
Annie Scarlet
Xem chi tiết
Thuy Khuat
Xem chi tiết
dream XD
Xem chi tiết
ĐTT
Xem chi tiết