\(x+y+z+t=2019\Rightarrow\left\{{}\begin{matrix}x+y+z=2019-t\\x+y+t=2019-z\\x+z+t=2019-y\\y+z+t=2019-x\end{matrix}\right.\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{y+z+t-nx}{x}=\dfrac{x+z+t-ny}{y}...=\dfrac{\left(3-n\right)\left(x+y+z+t\right)}{x+y+z+t}=3-n\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z+t-nx}{x}=3-n\\\dfrac{x+z+t-ny}{y}=3-n\\\dfrac{x+y+t-nz}{z}=3-n\\\dfrac{x+y+z-nt}{t}=3-n\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2019-x-nx}{x}=3-n\\\dfrac{2019-y-ny}{y}=3-n\\\dfrac{2019-z-nz}{z}=3-n\\\dfrac{2019-t-nt}{t}=3-n\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2019-\left(n+1\right)x=\left(3-n\right)x\\2019-\left(n+1\right)y=\left(3-n\right)y\\2019-\left(n+1\right)z=\left(3-n\right)z\\2019-\left(n+1\right)t=\left(3-n\right)t\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2019}{3-n+n+1}=\dfrac{2019}{4}\\y=\dfrac{2019}{3-n+n+1}=\dfrac{2019}{4}\\z=\dfrac{2019}{3-n+n+1}=\dfrac{2019}{4}\\t=\dfrac{2019}{3-n+n+1}=\dfrac{2019}{4}\end{matrix}\right.\)
\(\Rightarrow x=y=z=t\Rightarrow P=x+2x-3x+x=x=\dfrac{2019}{4}\)