Cho 3 số thực dương x, y, z thỏa mãn: 1 x 2 + 1 y 2 + 1 z 2 = 1 . Tìm giá trị nhỏ nhất của biểu thức: P = y 2 z 2 x ( y 2 + z 2 ) + z 2 x 2 y ( z 2 + x 2 ) + x 2 y 2 z ( x 2 + y 2 )
cho ba số dương x,y,z thỏa mãn điều kiện xy+yz+xz=1
Tính A=x\(\sqrt{\frac{\left(1+y2\right)\left(1+z2\right)}{1+x2}}\)+y\(\sqrt{\frac{\left(1+z2\right)\left(1+x2\right)}{1+y2}}\)+ z\(\sqrt{\frac{\left(1+x2\right)\left(1+y2\right)}{1+z2}}\)
\(\text{Cho các số thực dương x, y, z thỏa mãn: x2+y2+z2=1 CMR: (x−1)+(y−2)2+(z−3)4≥88 }\)
HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
thanks người giúp
Cho các số x, y, z dương. Chứng minh rằng x2/y2 + y2/z2 + z2/x2 ≥ x/y + y/z + z/x
Cho các số x, y, z dương. Chứng minh rằng x2/y2 + y2/z2 + z2/x2 ≥ x/y + y/z + z/x
Cho các số x, y, z dương. Chứng minh rằng x2/y2 + y2/z2 + z2/x2 ≥ x/y + y/z + z/x
Tìm các số thực dương x,y,z thoả mãn:
x. căn của (1-y2) + y. căn của (2-z2) + z. căn của (3-x2) = 3
cho ba số dương x, y , z thoả mãn x+y+z=3/4 chứng minh rằng
6(x2+y2+z2)+10(xy+yz+xz)+2(1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z))>=9