Câu hỏi hơi xàm
Do a;b;c không âm \(\Rightarrow\frac{a}{a+1}\ge0\) ; \(\frac{b}{b+1}\ge0\); \(\frac{c}{c+1}\ge0\)
\(\Rightarrow T\ge0\)
\(T_{min}=0\) khi \(a=b=c=0\)
Câu hỏi hơi xàm
Do a;b;c không âm \(\Rightarrow\frac{a}{a+1}\ge0\) ; \(\frac{b}{b+1}\ge0\); \(\frac{c}{c+1}\ge0\)
\(\Rightarrow T\ge0\)
\(T_{min}=0\) khi \(a=b=c=0\)
Cho 3 số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=2\left(a+b++c\right)\)
Tìm max T = \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
Bài 1: Cho các số thực dương a,b,c thỏa mãn các điều kiện \(\left(a+c\right)\left(b+c\right)=4c^2\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức
\(P=\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Bài 2: Cho x,y,z thỏa mãn x+y+z=0 và \(x^2+y^2+z^2=1\). Tìm GTLN của biểu thức \(P=x^5+y^5+z^5\)
Bài 3: Cho a,b,c dương thỏa mãn \(a+b+c=1.\)Tìm Min
\(P=2020\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
Bài 4: Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=3. Tìm GTLN của biểu thức \(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
cho các số thực dương a,b,c thỏa mãn \(a+b+c\le\frac{3}{2}\)
tìm min B=\(\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
cho a;b;c là các số thực dương thỏa mãn abc=1.Tìm Min của \(P=\frac{a^2}{\left(a+1\right)\left(b+1\right)bc}+\frac{b^2}{\left(b+1\right)\left(c+1\right)ca}+\frac{c^2-a^2b-ab-a-1}{\left(c+1\right)\left(a+1\right)ab}\)
Cho a,b,c là 3 số thực không âm thỏa mãn a + b+ c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\) 2.CMR: \(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
cho a,b,c là các số thực phân biệt , không âm thỏa mãn a2+b2+c2 =3 .Tìm giá trị nhỏ nhất của biểu thức :
S=\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\)
2. Cho a,b,c là ba số thực không âm thỏa mãn a+b+c= \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). CMR:\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
2. Cho a,b,c là ba số thực không âm thỏa mãn a+b+c= \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). CMR:\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
2. Cho a,b,c là ba số thực không âm thỏa mãn a+b+c= \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\). CMR:\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+b}+\frac{\sqrt{c}}{1+c}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)