Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Thị Bích Huệ

Cho 3 số nguyên tố lớn hơn 3. Chứng minh rắng trong ba số luôn tồn tại hai số có tổng hoăc hiệu của chung chia hết cho 12

Top Scorer
5 tháng 6 2016 lúc 7:59

Cách 2:
S x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + …. + 11x12x(13-10) + 12x13x(14-11)
S x 3 = 1x2x3 + 2x3x4 – 2x3x1 + 3x4x5 – 3x4x2 + …..+ 11x12x13 – 11x12x10 +12x13x14 – 12x13x11
S x 3 = 12 x 13 x14
S = 4 x 13 x 14
S = 728 

SKT_Rengar Thợ Săn Bóng...
5 tháng 6 2016 lúc 8:01

Các số nguyên tố hơn 3 chia hết cho 12 thì dư 11 ; 7 ; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư

Này thành 2 nhóm : ( 5 ; 7 ) và ( 1 ; 11 ) thì với ba số bất kỳ đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên ( nguyên ý

dirichlet )

Nguyễn Lê Hoàng Việt
5 tháng 6 2016 lúc 8:02

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11 ; 7 ; 5 hoặc 1 ; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là ( 5;7 ) và ( 1;11 ) thì với 3 số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên.


Các câu hỏi tương tự
Bảo Bình Đáng Yêu
Xem chi tiết
Nguyễn Mạnh Trung
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
Phạm Việt Nam
Xem chi tiết
Trần Khánh Châu
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết
THI MIEU NGUYEN
Xem chi tiết
Nguyễn Hoàng Sơn
Xem chi tiết