Cho các số dương x, y, z thỏa mãn:\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất của
\(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
cho 3 số khác 0 thỏa mãn x+y+z=0
tính giá trị bt \(\frac{xy}{x^2+y^2-z^2}+\frac{xz}{x^2+z^2-y^2}+\frac{yz}{y^2+z^2-x^2}\)
cho các số thực dương x,y,z thỏa mãn xy=xz+yz. tìm giá trị nhỏ nhất
\(P=\frac{\text{4z(z^2-xy)-(x^2+y^2)(2z-x-y)}}{\left(x+y\right)z^2}\)
Bài 1:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, chứng minh rằng: \(2\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge5\)
Bài 2:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, z = max {x, y, z), chứng minh rằng: \(\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge4\)
Bài 3:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0 và x + y + z = 2,chứng minh rằng: \(\frac{x}{\sqrt{4x+3yz}}+\frac{y}{\sqrt{4y+3xz}}+\frac{z}{\sqrt{4z+3xy}}\le1\)
Bài 4:
Với x, y, z là các số thực dương, chứng minh rằng: \(\frac{a}{\sqrt{a^2+15bc}}+\frac{b}{\sqrt{b^2+15ca}}+\frac{c}{\sqrt{c^2+15ab}}\ge\frac{3}{4}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình!!! PLEASE!!!
Cho các số dương x,y,z thỏa mãn: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất biểu thức \(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho x, y, z là 3 số dương thỏa mãn :\(x^2+y^2+z^2\le3\) . Tìm GTNN
\(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)
Bác nào giải chi tiết hộ em với
cho x,y,z thỏa mãn x.y.z=2 và 2+x+x.y khác 0
tính B=1/(1+y+yz)+2/(2+2z+xz)+2/(2+x+xy)
Cho x;y;z là 3 số thực dương thỏa mãn \(x+y+z=9\). Tính GTNN cảu biểu thức
\(S=\frac{y^3}{x^2+xy+y^2}+\frac{z^3}{y^2+yz+z^2}+\frac{z^3}{z^2+zx+x^2}\)
cho x,y,z khác 0 thỏa mãn \(\frac{xy}{x+y}+\frac{yz}{y+z}+\frac{xz}{x+z}\)
tính giá trị của M=\(\frac{x^2+y^2+z^2}{xy+xz+yz}\)