Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Hoài Thanh

Cho 3 số dương x,y,z thỏa mãn: xy+yz+zx=1. Chứng minh rằng:

\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+z^2\right)\left(1+y^2\right)}{1+z^2}}=2\)

Thắng Nguyễn
26 tháng 8 2016 lúc 14:30

Ta có:

\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)

\(1+y^2=xy+yz+xz+y^2=\left(y+z\right)\left(x+y\right)\)

\(1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\)

Thay vào A được:

\(P=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}\)\(+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(=xy+xz+xy+yz+xz+zy\)

\(=2\left(xy+yz+xz\right)\)

\(=2\)(do xy+yz+xz=1)

=>Đpcm

Bùi Thị Vân
26 tháng 8 2016 lúc 10:28

Dạng toán này rất nhiều bạn hỏi rồi: thay \(xy+yz+zx=1\) vào các căn thức rồi phân tích đa thức thành nhân tử.


Các câu hỏi tương tự
Nguyễn Tuấn Minh
Xem chi tiết
Oanh Trần
Xem chi tiết
Trương Krystal
Xem chi tiết
KCLH Kedokatoji
Xem chi tiết
Bùi Lê Hân
Xem chi tiết
loan leo
Xem chi tiết
Truong Le
Xem chi tiết
Châu Hữu Phát
Xem chi tiết
Trà My
Xem chi tiết